
SEUP Docs Documentation
Release 0.0.1

Ashray Manur

Jan 25, 2019

Contents

1 EnerGyan in one sentence 3

2 EnerGyan in one picture 5

3 Why EnerGyan? 7
3.1 Contents: . 7

3.1.1 Contact . 7
3.1.2 Frequently Asked Questions . 7
3.1.3 EnerGyan . 9
3.1.4 Developing Apps with EnerGyan . 10
3.1.5 Troubleshooting . 38
3.1.6 EnerHack 2018 . 39

i

ii

SEUP Docs Documentation, Release 0.0.1

EnerGyan (pronounced /enr in/) is an energy education and research platform developed for high school, undergraduate
and graduate students with focus on energy. It was designed and developed at UW-Madison. It also serves as a research
platform for scientists, energy engineers and researchers pursing advanced studies in power system, electronics, IoT,
cyber-physical systems, and energy system etc.

Contents 1

SEUP Docs Documentation, Release 0.0.1

2 Contents

CHAPTER 1

EnerGyan in one sentence

It’s a programmable electricity grid-in-a-box.

3

SEUP Docs Documentation, Release 0.0.1

4 Chapter 1. EnerGyan in one sentence

CHAPTER 2

EnerGyan in one picture

5

SEUP Docs Documentation, Release 0.0.1

6 Chapter 2. EnerGyan in one picture

CHAPTER 3

Why EnerGyan?

3.1 Contents:

3.1.1 Contact

Question? Please contact us at energyan.info@gmail.com

3.1.2 Frequently Asked Questions

Where can EnerGyan be used?

EnerGyan is a flexible platform that can used by students at various levels. It is also a research platform for R&D in
energy systems.

• High school

• Technical colleges

• Undergraduate and graduate programs

• Energy centers and companies for R&D

What can you learn/teach with EnerGyan?

• Intro to energy systems

• Smart and micro grids

• IoT and smart homes

• Mobile and cloud computing for energy systems

• Optimization, AI and ML for energy systems

7

mailto:energyan.info@gmail.com

SEUP Docs Documentation, Release 0.0.1

How do students program EnerGyan?

What can EnerGyan do?

EnerGyan can function as the following. You can think of more ways to use EnerGyan.

• A microgrid

• A smart home

• A solar charging station

• Bunch of EnerGyans can be networked together to form a larger microgrid

• IoT testbed

How can you teach with EnerGyan?

EnerGyan can be used in a number of ways

• Semester long course

• 2 week workshop on energy systems

8 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

• 3 day hackathons

We’ve done all of these with EnerGyan. Its adaptable to your application.

Who’s the audience for this?

Anybody with a passion for energy and basic programming skills.

Is it just software-based education?

No! EnerGyan is software and HARDWARE customizable. Here are some things that you can do (limited list)

• You can change the type of source or load.

• You can change battery type or size.

• You can connect different type of sensors (moisture, temperature, light etc.)

• You can connect smart home devices with EnerGyan - Amazon Echo, Google Home, Wemo switches etc.

• You can change the configuration of your energy system. You can turn your EnerGyan smart home to EnerGyan
Community Solar charging station by simple re-wiring.

• The list goes on . . .

3.1.3 EnerGyan

EnerGyan Features

• Electrical Hardware - contains a grid in a box. Comes with complete energy hardware - energy sources, loads,
converters, batteries, energy management boards (called HEM).

• Computing - EnerGyan computing system can run your energy application.

• Communication - EnerGyan comes with a number of communication capabilities - WiFi, Ethernet,
GSM/GPRS/3G and Bluetooth.

• Data storage - EnerGyan has on-board data storage which is continuously storing all electrical parameters. You
can retrieve this data whenever you want.

• Software - EnerGyan’s software called HEMApp keeps the module up & running and does all the heavy lifting
for you.

Nomenclature

• Loads - an entity which consumes energy is called a load. This can be a TV or your phone.

• Source - an entity which produces energy. This can be a solar panel, wind turbine etc.

• Storage - an entity which can store energy. Most common is a battery and they come in different varieties - lead
acid, Li ion etc.

• Nodes - these are hardware ports that are used to physically connect a source or a load. It’s like an electric plug
point you use to connect your phone charger. Every EnerGyan module has a fixed number of ports. EnerGyan
DC has 8 and EnerGyan AC has 6 ports.

3.1. Contents: 9

SEUP Docs Documentation, Release 0.0.1

• HEM - Homegrid Energy Manager. This is the brain (energy management) of EnerGyan. It is custom built
hardware and software which help manage EnerGyan.This keeps EnerGyan running and does all the heavy
lifting. Every EnerGyan model has a HEM system.

What does EnerGyan DC contain?

It contains the following items

• Solar panel

• One 7Ah battery for energy system

• One 7Ah battery for management system

• One HEM system (management system)

• Battery charger port

• Two battery chargers for the batteries

• 12V to 5V USB charger

• 12V car charger

• Eight nodes (you can connect loads/sources)

What does EnerGyan AC contain?

It contains the following items

• Solar panel

• One 7Ah battery for energy system

• One 7Ah battery for management system

• One HEM system (management system)

• Battery charger port

• Two battery chargers for the batteries

• Inverter (120V AC output)

• 6 nodes (only loads).

3.1.4 Developing Apps with EnerGyan

This section deals with developing and deploying apps locally on EnerGyan.

What is an app?

When people hear the word ‘app’, most think of a sophisticated iOS/Android application for phones. We are here to
change that mindset. For us, an app is a piece of software than can perform a task(s). It can be something as simple
as a Python script with few lines of code which sends you an alert when your energy consumption crosses a threshold.
While this might seem simple (and it is), its a valuable feature to have when you’re battery is running low or your solar
panel is not producing enough energy.

10 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

Where should you run your app?

• You can deploy your app on a computer (connected to the same network as EnerGyan)

• You can deploy your app on EnerGyan

When should you deploy your app on the computer?

• Your app does offline analysis

• It is computationally intensive

• Your app is UI (user interface) based and needs a large monitor, keyboard etc.

• Note: You can also run online apps if you have a dedicated computer

When should you run your app on EnerGyan?

• App has to run continuously (24*7)

• It it computationally less intensive

• App is latency sensitive

3.1. Contents: 11

SEUP Docs Documentation, Release 0.0.1

Before you start

Make sure you are authorized to access EnerGyan

You should get necessary permissions and training before you proceed.

Accessing EnerGyan

EnerGyan can be accessed through a web browser(wired or wireless),

They can also be accessed through SSH (wired or wireless). The boards are password protected. Talk to the ad-
min/manufacturer for these details.

Making sure EnerGyan is running

Make sure the EnerGyan platform is up and running. The easiest way is to check the touch-display and see if it displays
the default screen as shown below.

12 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

Connect EnerGyan to your network

Connect EnerGyan hardware module to your network (wired or wireless)

• For wired connection, connect EnerGyan to your router through an Ethernet cable.

• For wireless connection, use the touch display (on EnerGyan) to connect it to your WiFi.

Connecting to EnerGyan

To communicate with EnerGyan, make sure your computing device is on the same network as EnerGyan (or use VPN)

Communicating with EnerGyan

EnerGyan has an internal computer which runs a UDP server. This means your app (deployed on EnerGyan or on your
computer) which acts as a UDP client can request data from this server and also send requests to turn on/off nodes.

3.1. Contents: 13

https://en.wikipedia.org/wiki/User_Datagram_Protocol

SEUP Docs Documentation, Release 0.0.1

Here is a quick tutorial on UDP.

Your app (which is the UDP client) can be written in any language.

EnerGyan tool kit abstracts communication between UDP server and client so that you don’t have to worry about UDP
communication. However, at this point the toolkit only supports Python.

Note: You can use our API with any computer language

Python

If your app is Python based, we got you covered. See Downloading the EnerGyan ToolKit. This toolkit abstracts all
the communication between your app and the EnerGyan server.

JavaScript

You can create a UDP client in JS using Node.js. See here for more details.

Java

Oracle has official Java documentation on UDP server and client. See this. You can also checkout this tutorial .

Almost all popular computer languages have support for UDP.

Running the app on EnerGyan

Connect to EnerGyan

As long as you’re on the same network as EnerGyan, you can connect to it through a wired or a wireless connection.
The IP of EnerGyan will be displayed on the touch screen. Connect to it from browser. For example if EnerGyan’s IP
is 192.168.1.159, enter the following in your browser

http://192.168.1.159:3000/ide.html

This opens up an online editor for developing and running your energy application.

14 Chapter 3. Why EnerGyan?

https://www.tutorialspoint.com/data_communication_computer_network/user_datagram_protocol.htm
https://nodejs.org/api/dgram.html
https://nodejs.org/api/dgram.html
https://docs.oracle.com/javase/tutorial/networking/datagrams/

SEUP Docs Documentation, Release 0.0.1

Navigating to the EnerGyan toolkit

Running the app (on EnerGyan)

EnerGyan comes preloaded with the EnerGyanToolKit.

On the online editor, select EnerGyanToolKit. It has two sub-directories - module and examples.

3.1. Contents: 15

SEUP Docs Documentation, Release 0.0.1

• module - contains modules necessary to create and run an app.

• examples - contains sample apps. examples/bare.py is a skeleton app that you can build on.

Let’s run a sample app

In the examples directory, select actuate.py. You should see the screen below.

16 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

Now, click on Run

To stop your app, click on the Stop button located at the bottom of the editor. The picture below shows the output
area of your app. The output of any print statements will be displayed here.

3.1. Contents: 17

SEUP Docs Documentation, Release 0.0.1

Now, click on Stop

You can create a new file/script/app by selecting File –> New File

Running your app continuously

If you want your app to run in the background, just close the browser after you click on Run

Running the app on your computer

To run the app on your computer, you need to download the EnerGyan Tool Kit.

Downloading the EnerGyan ToolKit

Go to https://gitlab.com/seup/EnerGyanToolKit

18 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

Fork the repository

Here is the guide from GitLab - https://docs.gitlab.com/ce/gitlab-basics/fork-project.
html

Clone the fork you created

git clone PASTE_YOUR_SSH_OR_HTTPS_PROJECT_NAME_HERE

Navigate to the development tool kit directory

$ cd EnerGyanToolKit

Understanding development tool kit directory structure

In EnerGyanToolKit

• module - contains hem modules necessary to create an app. Copy this folder to your directory when creating
your app.

• examples - contains sample apps

Creating your first app

You can use bare.py as a starting point. It has all the boiler plate code you need for an energy app.

Sample apps included

Here is a list

• pullData.py - Pull node(all) data from HEMApp Server through API

• pullData_single.py - Pull single node data from HEMApp Server through API

• actuate.py - Turn on/off nodes through API

• demandManage.py - Perform load management when power consumption crosses threshold

• email.py - Send an email from your app

• demandManage_email.py - Send an email from your app when you do load management

Running a sample app

Let’s run an app which turns on/off a particular node on HEM

Check server address

If you’re running this app on your computer or a different EnerGyan (which is different from where you’re pulling the
data), change the SERVER_NAME to the local ip address.

If your app has to run in the background, use nohup

3.1. Contents: 19

SEUP Docs Documentation, Release 0.0.1

nohup python actuate.py &

Stopping your app

Get the process id (pid) of your app process

ps aux | grep actuate

The output of this looks something like this

user 70413 0.0 0.1 110404 9804 pts/8 Sl 13:33 0:00 python actuate.py

The pid in this case is 70413

pid is the number listed in the PID column for your app

Now kill that process

pkill -9 <pid>

In this case, it would be something like

pkill -9 70413

Creating a pull request

If you find any bugs, you can create pull requests.

Here are two tutorials

• https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html

• https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github - this is for GitHub
but can be applied to GitLab

Skeleton app

Let’s look at a skeleton app that can be used as a starting point for app development

Open bare.py in examples to follow along with the rest of the section

#
bare.py
Skeleton app that can be used for app deployments

Author: Ashray Manur

import datetime
import threading
import time

sys.path.insert(1,'../')

import module.hemParsingData
(continues on next page)

20 Chapter 3. Why EnerGyan?

https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html
https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github

SEUP Docs Documentation, Release 0.0.1

(continued from previous page)

from module.hemSuperClient import HemSuperClient

hemSuperClient = HemSuperClient("192.168.1.236", 9931)

def update(message, address):
print 'Rec:', message, address
#{'NODE': 'ALL', 'TYPE': 'DCPOWER', 'VALUE': [0.185, 5.9, 85.6, 10.4, 0, 0, 0,

→˓ 12.5]} ('192.168.1.236', 9931)

hemSuperClient.subscribe(update)

def main():

while(1):

hemSuperClient.sendRequest("api/getdcpower/all")
time.sleep(5)

if __name__ == "__main__":
main()

The sections below are explaining the various components of the app framework using bare.py as an example

Importing Modules

Import your standard python modules

import datetime
import threading
import time

Import hem modules

sys.path.insert(1,'../')

from module.hemSuperClient import HemSuperClient
import module.hemParsingData
import module.hemEmail

Note: there might be other standard or custom modules that you might need to import based on what you’re doing

sys.path.insert(1,'../') is used to define the path to indicate the location of the modules. Change this
depending on your directory structure.

Defining a trigger function

def update(message, address):
print 'Rec:', message, address

This functions gets triggered every time your app gets a message from the EnerGyan server. It takes two arguments
message and address. When it is triggered, the actual data gets stored in message and the address of the server
responding to your request gets stored in response

3.1. Contents: 21

SEUP Docs Documentation, Release 0.0.1

Creating a new Client

This client is used to communicate with EnerGyan. The EnerGyan runs a server(called HEMApp server) to which
you can send requests and receive responses This client abstracts the communication to make data communication
between your app and the server easier.

#Creates a new HEM client to talk to the server
hemSuperClient = HemSuperClient("192.168.1.236", 9931)

If your app is running on EnerGyan computer, change the IP address to “localhost”

The port is fixed at 9931

Defining multiple Clients

Not included in bare.py

In case your app is communicating with many EnerGyans

hemSuperClient1 = HemSuperClient('localhost', 9931)
hemSuperClient2 = HemSuperClient('192.168.1.28', 9931)
hemSuperClient3 = HemSuperClient('192.168.1.29, 9931)

You can request data from all these servers as along as they are in the same network

Subscribing to updates

After you define your trigger function and the HEM client, you need to subscribe to updates. This ensures that
whenever you get a response from HEM. This can be done by

hemSuperClient.subscribe(update)

The argument to this function is the name of the trigger function.

Understanding response data from server

Whenever data is sent from the server, the trigger function gets called and it gives you two values message and
address.

message contains the response to the request you made address contains the details of the server making that
response

message is a dictionary (key:value) and address is a tuple

print 'Rec:', message, address

A sample message is as follows. This response if for a request of power data for all nodes in HEM

{'NODE': 'ALL', 'TYPE': 'DCPOWER', 'VALUE': [0.185, 5.9, 85.6, 10.4, 0, 0, 0, 12.5]}

To extract the value:

message['VALUE']

The output would be

22 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

[0.185, 5.9, 85.6, 10.4, 0, 0, 0, 12.5]

To extract the node corresponding to this value

message['NODE']

The output would be

ALL

There is usually one key:value per request

API

API general format

/api/<action>/<node-number>

Actions can be

• Turn on/off

• Get electrical data

• Send messages

Node numbers usually go from 0-7

How to use the API

hemSuperClient.sendRequest(apiRequest)

Sample request

hemSuperClient.sendRequest("api/getdcpower/0")

Sample response

#message
{'NODE': '1', 'TYPE': 'DCPOWER', 'VALUE': [45.7]}

EnerGyan DC Systems

This section is for EnerGyan DC.

3.1. Contents: 23

SEUP Docs Documentation, Release 0.0.1

Turn off nodes

Format

/api/turnoff/<node-number>

Sample

/api/turnoff/3

Sample response

#message
{'NODE': '3', 'TYPE': 'TURNON', 'VALUE': [0]}

For ‘VALUE’ 1 means ON and 0 means OFF

Turn on nodes

Format

/api/turnon/<node-number>

Sample

/api/turnon/1

Sample response

#message
{'NODE': '1', 'TYPE': 'TURNON', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

Status of single node

Format

/api/getnodestatus/<node-number>

Sample

/api/getnodestatus/1

Sample response

#message
{'NODE': '1', 'TYPE': 'STATUS', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

24 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

Status for all nodes

Format

/api/getnodestatus/all

Sample response

#responseData
{'NODE': 'ALL', 'TYPE': 'STATUS', 'VALUE': [0,0,0,1,1,1,0,1]}

0 is off and 1 is on

DC voltage for single node

Format

/api/getdcvoltage/<node-number>

Sample

/api/getdcvoltage/3

Sample response

#message
{'NODE': '3', 'TYPE': 'DCVOLT', 'VALUE': [14.2]}

The value is in Volts

DC voltage values for all nodes

Format

/api/getdcvoltage/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCVOLT', 'VALUE': [13.625, 13.6, 13.625, 13.4, 13.7, 13.8,
→˓13.6, 13.6]}

The value is in Volts

DC current for single node

Format

/api/getdccurrent/<node-number>

Sample

3.1. Contents: 25

SEUP Docs Documentation, Release 0.0.1

/api/getdccurrent/4

Sample response

#message
{'NODE': '4', 'TYPE': 'DCCURRENT', 'VALUE': [1.88375]}

The value is in Amps

DC current values for all nodes

Format

/api/getdccurrent/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCCURRENT', 'VALUE': [1.6, 1.2, 0, 0.4, 3.7, 1.8, 1.3, 3.6]}

The value is in Amps

DC power for single node

Format

/api/getdcpower/<node-number>

Sample

/api/getdcpower/5

Sample response

#message
{'NODE': '5', 'TYPE': 'DCPOWER', 'VALUE': [26.74925]}

The value is in Watts

DC power values for all nodes

Format

/api/getdcpower/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCPOWER', 'VALUE': [0.185, 0.185, 5.3,0,0,0,0,0]}

The value is in Watts

26 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

DC energy for single node

Format

/api/getdcenergy/<node-number>

Sample

/api/getdcenergy/1

Sample response

#message
{'NODE': '1', 'TYPE': 'DCENERGY', 'VALUE': [2252428.391018]}

The value is in Joules. You can convert it to Wh

DC energy values for all nodes

Format

/api/getdcenergy/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCENERGY', 'VALUE': [29.21, 16.688, 13.5,3.52,0,0,0.3358,0]}

The value is in Joules. You can convert that to Wh

DC charge for single node

Format

/api/getdccharge/<node-number>

Sample

/api/getdccharge/0

Sample response

#message
{'NODE': '0', 'TYPE': 'DCCHARGE', 'VALUE': [170782.33881]}

The value is in Coulombs

DC charge values for all nodes

Format

/api/getdccharge/all

3.1. Contents: 27

SEUP Docs Documentation, Release 0.0.1

Sample response

#responseData
{'NODE': 'ALL', 'TYPE': 'DCCHARGE', 'VALUE': [8779.87, 5014.19, 4066.334, 1040.689,0.
→˓000328,0.000328,15.080517,0]}

The value is in Coulombs

EnerGyan AC Systems

This section is for EnerGyan AC.

Turn off nodes

Format

/api/turnoff/<node-number>

Sample

/api/turnoff/3

Sample response

#message
{'NODE': '3', 'TYPE': 'TURNON', 'VALUE': [0]}

For ‘VALUE’ 1 means ON and 0 means OFF

Turn on nodes

Format

/api/turnon/<node-number>

Sample

/api/turnon/1

Sample response

#message
{'NODE': '1', 'TYPE': 'TURNON', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

Status of single node

Format

/api/getnodestatus/<node-number>

Sample

28 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

/api/getnodestatus/1

Sample response

#message
{'NODE': '1', 'TYPE': 'STATUS', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

Status for all nodes

Format

/api/getnodestatus/all

Sample response

#responseData
{'NODE': 'ALL', 'TYPE': 'STATUS', 'VALUE': [0,0,0,1,1,1,0,1]}

For ‘VALUE’ 1 means ON and 0 means OFF

AC voltage for single node

Format

api/getacvoltage/<node-number>

Sample

/api/getacvoltage/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACVOLT', 'VALUE': [115.717569]}

This is the RMS voltage and is in Volts

AC voltage for all nodes

Format

/api/getacvoltage/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACVOLT', 'VALUE': [115.82487, 115.82487, 115.82487, 115.
→˓82487, 115.82487, 115.82487]}

This is the RMS voltage and is in Volts

3.1. Contents: 29

SEUP Docs Documentation, Release 0.0.1

AC current for single node

Format

/api/getdcenergy/<node-number>

Sample

/api/getaccurrent/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACCURRENT', 'VALUE': [0.339167]}

This is the RMS current and is in Amps

AC current for all nodes

Format

/api/getaccurrent/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACCURRENT', 'VALUE': [0.339141, 0.304396, 0.009357, 0.005452,
→˓ 0.003518, 0.003526]}

This is the RMS current and is in Amps

AC active power for single node

Format

api/getacpoweractive/<node-number>

Sample

api/getacpoweractive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACPOWERACTIVE', 'VALUE': [39.164083]}

AC active power for all nodes

Format

/api/getacpoweractive/all

Sample response

30 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

#message
{'NODE': 'ALL', 'TYPE': 'ACPOWERACTIVE', 'VALUE': [39.127099, 34.572928, 0, 0, 0, 0]}

AC reactive power for single node

Format

/api/getacpowerreactive/<node-number>

Sample

api/getacpowerreactive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACPOWERREACTIVE', 'VALUE': [-0.74302]}

AC reactive power for all nodes

Format

/api/getacpowerreactive/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACPOWERREACTIVE', 'VALUE': [-0.744076, -5.766048, 0, 0, 0,
→˓0]}}

AC active energy for single node

Format

/api/getacenergyactive/all

Sample

api/getacenergyactive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACENERGYACTIVE', 'VALUE': [0.034566]}

AC active energy for all nodes

Format

3.1. Contents: 31

SEUP Docs Documentation, Release 0.0.1

/api/getdcenergy/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACENERGYACTIVE', 'VALUE': [0.034648, 0.030616, 0, 0, 0, 0]}

AC reactive energy for single node

Format

api/getacenergyreactive/<node-number>

Sample

api/getacenergyreactive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACENERGYREACTIVE', 'VALUE': [-0.000741]}

AC reactive energy for all nodes

Format

api/getacenergyreactive/all

Sample response

#message
{u'NODE': u'ALL', u'TYPE': u'ACENERGYREACTIVE', u'VALUE': [-0.000658, -0.005185, 0, 0,
→˓ 0, 0]}

AC frequency for single node

Format

api/getacfrequency/<node-number>

Sample

api/getacfrequency/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACFREQUENCY', 'VALUE': [59.967205]}

32 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

AC frequency for all nodes

Format

api/getacfrequency/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACFREQUENCY', 'VALUE': [59.967205, 59.967205, 59.967205, 59.
→˓967205, 59.967205, 59.967205, 0, 0]}

AC angle for single node

Format

"api/getacangle/<node-number>"

Sample

api/getacangle/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACANGLE', 'VALUE': [-0.815625]}

AC angle for all nodes

Format

api/getacangle/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACANGLE', 'VALUE': [-0.73125, -9.50625, -21.65625, -27.5625,
→˓68.428125, -11.025]}

AC power factor for single node

Format

/api/getacangle/<node-number>

Sample

api/getacangle/0

Sample response

3.1. Contents: 33

SEUP Docs Documentation, Release 0.0.1

#message
{'NODE': '0', 'TYPE': 'ACPF', 'VALUE': [0.999797]}

AC power factor for all nodes

Format

api/getacangle/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACPF', 'VALUE': [0.999797, 0.985777, 0.924442, 0.27144, 0.
→˓364928, 0.012272]}

Modules

This section deals with the important modules that you can use to build your app. These can be found in
SeupAppKit/module

hemSuperClient.py

This module is used to communicate with the server

You can import it with

from module.hemSuperClient import HemSuperClient

Check out pullData.py to learn how to use it.

hemEmail.py

This module is used to send email with the server

You can import it with

import module.hemEmail

Check out email.py to learn how to use it

hemParsingData.py

This module parses data from HEM data dump to extract electrical and node data

You can import with

import module.hemParsingData

Check out parsing.py to learn how to use it

34 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

Tutorials

Understanding the HEM data dump

HEMApp (the core software which runs HEM) dumps all the electrical data (voltage, current, power etc.) on the
microSD card on the processor. The file is data.csv and is located at /media/card

Here are few lines from data.csv

VOLT:13.65,NODE:0,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:1,DATE:12/8/17-2:28:40
VOLT:13.65,NODE:2,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:3,DATE:12/8/17-2:28:40
VOLT:13.65,NODE:4,DATE:12/8/17-2:28:40
VOLT:13.65,NODE:5,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:6,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:7,DATE:12/8/17-2:28:40
AMP:0.00,NODE:0,DATE:12/8/17-2:28:40
AMP:0.00,NODE:1,DATE:12/8/17-2:28:40
AMP:0.00,NODE:2,DATE:12/8/17-2:28:40
AMP:0.00,NODE:3,DATE:12/8/17-2:28:40
AMP:0.00,NODE:4,DATE:12/8/17-2:28:40
AMP:0.00,NODE:5,DATE:12/8/17-2:28:40
AMP:0.00,NODE:6,DATE:12/8/17-2:28:40
AMP:0.00,NODE:7,DATE:12/8/17-2:28:40
POW:1.00,NODE:0,DATE:12/8/17-2:28:40
POW:2.00,NODE:1,DATE:12/8/17-2:28:40
POW:3.00,NODE:2,DATE:12/8/17-2:28:40
POW:4.00,NODE:3,DATE:12/8/17-2:28:40
POW:5.00,NODE:4,DATE:12/8/17-2:28:40
POW:6.00,NODE:5,DATE:12/8/17-2:28:40
POW:7.00,NODE:6,DATE:12/8/17-2:28:40
POW:8.00,NODE:7,DATE:12/8/17-2:28:40

Here the labels mean the following

• VOLT:13.65 - VOLT is dc voltage and the value followed by : is the voltage in volts. Similarly, AMP, POW,
ENERGY, CHARGE are for dc current, power, energy and charge respectively.

• NODE:0 - indicates the node number. This can go from 0-7 for dc systems and 0-5 for ac systems.

• DATE:12/8/17-2:28:40 - indicates the date and time.

Extracting/copying data from HEM data dump

HEM Data Dump - HEM stores all the electrical data in a file data.csv in /media/card. This file is usually
hundreds of megabytes. Copying the entire file for a small amount of specific data is unreasonable.

This tutorial shows how you can copy specific information from the data dump for your app. Three examples will be
demonstrated.

• Only voltage data of all nodes for 2 days

• All electrical data of all nodes for a week

• Only power data of all nodes for 1 day

Open file.py to follow along

3.1. Contents: 35

SEUP Docs Documentation, Release 0.0.1

To copy one day’s worth of data from sample.csv (you can replace this with /media/card/data.csv) into
a new file oneDay.csv:

cmd = "grep -e '10/1/17' ../data/sample.csv > ../data/oneDay.csv"

• '10/1/17' - the date of interest

• /data/sample.csv - this is the source file (for this demo). If you want the actual data dump, replace this
with /media/catd/data.csv

• /data/oneDay.csv - this is the destination file

Execute the command

result = subprocess.check_output(cmd, shell=True)

Check if your new file was created

fileExists = Path('../oneDay.csv')
if(fileExists.is_file()):

print 'file exists'

Copy one day’s worth of voltage data

The command

cmd = "grep -e 'VOLT.*10/1/17' ../data/sample.csv > ../data/oneDayVolt.csv"

The search should satisfy both date and data type. Here the electrical data type is VOLT

Execute the command

result = subprocess.check_output(cmd, shell=True)

Check if the file exists

fileExists = Path('../data/oneDayVolt.csv')
if(fileExists.is_file()):

print 'file exists'

Copying one week worth of all data

The command

cmd = "grep -e '10/[1-8]/17' ../data/sample.csv > ../data/oneWeek.csv"

Execute the command

result = subprocess.check_output(cmd, shell=True)

Check if the file exists

#Check if the file exists. This is to make sure the file was created
fileExists = Path('../data/oneWeek.csv')
if(fileExists.is_file()):

print 'file exists'

36 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

KnowledgeBase

Integrating other devices with EnerGyan

Connecting to a 3rd party device directly through wired or wireless channel

When you have other Internet devices that you’d like to connect to EnerGyan, you can use the following architecture.
This can be useful for smart homes and sensor projects.

Connect your sensors or other peripherals to a WiFi micro-controller (or add a WiFi module to an Arduino) through
serial communication. You can also use single board computers (SBC) like Raspberry Pis and Your app on EnerGyan
has two components.

• The first component is the UDP client which talks to the EnerGyan server.

• The second component is the HTTP/UDP server which communicates with the micro-controllers.

• You can add other components such as processing, management and intelligence units.

When should I use this architecture? This is can be used when the post processing sensor data is lightweight.
EnerGyan on-board computer is not suitable for running high-end image processing or graphics related apps. It works
well for low-end sensor data and communication.

What’s the role of EnerGyan in this architecture EnerGyan serves as the energy system and a computation unit.
For example in a smart home project, the input from the sensors (embedded system) is used to manage the energy
system (EnerGyan). For example, you can turn off loads

3.1. Contents: 37

SEUP Docs Documentation, Release 0.0.1

Connecting to a 3rd party device through an intermediate device

When you have Internet devices that you would like to connect to EnerGyan through an intermediate device like your
computer or powerful single board computers (SBCs). This configurations is when post processing of data from these
Internet devices requires huge computing resources.

Connect your Internet device (like NEST camera) to your network. Other devices on this network are EnerGyan and
your computer.

• Your app runs on your computer. It has three components - UDP client, HTTP/UDP client and the processing
unit.

• The UDP client communicates with the EnerGyan platform to send and receive data/actuate nodes etc.

• The second component of your app is the HTTP/UDP client which is pulling data from the Internet Device.

• The third component (processing unit) can process the data from the Internet device (for example processing
the images from NEST camera) and then based on that manage your energy system through the first component
(UDP client)

When should I use this architecture? This is can be used when the post processing sensor data is intensive. For
example, image processing is one example.

What’s the role of EnerGyan in this architecture EnerGyan serves as the energy system. For example in a smart
home project, the input from your smart devices like Echo, NEST cameras can be processed on your computer and the
result of that can be used to modify your energy system (EnerGyan)

3.1.5 Troubleshooting

Coming Soon!

38 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

3.1.6 EnerHack 2018

EnerGyan team assignment

• Bears in Chairs —EnerGyan DC5

• E —————–EnerGyan AC2

• Solaris————EnerGyan DC2

• FPGA—————EnerGyan AC1

• becky Badgers——EnerGyan DC1

• Vidyut————-EnerGyan DC4

• energySaver——–EnerGyan DC3

This section has resources for participants with the EnerHack Energy Hackathon 2018.

EnerGyan Hardware

DC1

IP - 192.168.1.207

• Node 0: Solar

• Node 1: Battery Charger

• Node 2: All Fans

• Node 3: Mini fridge

• Node 4: N/A

• Node 5: N/A

• Node 6: LED Lights

• Node 7: Radio

3.1. Contents: 39

SEUP Docs Documentation, Release 0.0.1

DC2

IP - 192.168.1.159

40 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

• Node 0: Solar

• Node 1: LED Light

• Node 2: Charger

• Node 3: LED Light Strip

• Node 4: N/A

• Node 5: N/A

• Node 6: DC/AC Converter (parallel with Node 7)

• Node 7: DC/AC Converter (parallel with Node 6)

DC3

IP - 192.168.1.28

• Node 0: Battery charger

• Node 1: Right fan bolted next to DC 3 sign

• Node 2: Jhua fan second lowest platform

• Node 3: White light

3.1. Contents: 41

SEUP Docs Documentation, Release 0.0.1

DC4

IP - 192.168.1.152

• Node 0: Battery charger

• Node 1: Left fan bolted next to the DC 4 sign

• Node 2: USB Led light string

• Node 3: Mitchell Fan

DC5

IP - 192.168.1.177

42 Chapter 3. Why EnerGyan?

SEUP Docs Documentation, Release 0.0.1

• Node 0: (top light)

• Node 1: (middle light)

• Node 2: (bottom light)

• Node 3: (dual fan)

• Node 4: N/A

• Node 5: Nothing plugged in to USB port

• Node 6: Nothing plugged in to car charger

DC6

IP - 192.168.1.217

• Node 0: Charger

• Node 1: Fan

• Node 2: Fan plugged in to car charger

• Node 3: LED light string

AC1

IP - 192.168.1.100

• Node 0: Fan

• Node 1: Desk Lamp

3.1. Contents: 43

SEUP Docs Documentation, Release 0.0.1

• Node 2: NA

• Node 3: NA

AC2

IP - 192.168.1.236

• Node 0: Fan

• Node 1: Desk Lamp

• Node 2: NA

• Node 3: NA

Other hardware

Misc

44 Chapter 3. Why EnerGyan?

	EnerGyan in one sentence
	EnerGyan in one picture
	Why EnerGyan?
	Contents:
	Contact
	Frequently Asked Questions
	EnerGyan
	Developing Apps with EnerGyan
	Troubleshooting
	EnerHack 2018

