

EnerGyan

EnerGyan (pronounced /eːnər ɡiːˈɑːn/) is an energy education and research platform developed for high school, undergraduate and graduate students with focus on energy. It was designed and developed at UW-Madison. It also serves as a research platform for scientists, energy engineers and researchers pursing advanced studies in power system, electronics, IoT, cyber-physical systems, and energy system etc.

EnerGyan in one sentence

It’s a programmable electricity grid-in-a-box.

EnerGyan in one picture

[image: _images/energyan.png]

Why EnerGyan?

 Contact

Contact

Question? Please contact us at energyan.info@gmail.com

 Frequently Asked Questions

Frequently Asked Questions

Where can EnerGyan be used?

EnerGyan is a flexible platform that can used by students at various levels.
It is also a research platform for R&D in energy systems.

	High school

	Technical colleges

	Undergraduate and graduate programs

	Energy centers and companies for R&D

What can you learn/teach with EnerGyan?

	Intro to energy systems

	Smart and micro grids

	IoT and smart homes

	Mobile and cloud computing for energy systems

	Optimization, AI and ML for energy systems

How do students program EnerGyan?

[image: _images/program.png]

What can EnerGyan do?

EnerGyan can function as the following. You can think of more ways to use EnerGyan.

	A microgrid

	A smart home

	A solar charging station

	Bunch of EnerGyans can be networked together to form a larger microgrid

	IoT testbed

How can you teach with EnerGyan?

EnerGyan can be used in a number of ways

	Semester long course

	2 week workshop on energy systems

	3 day hackathons

We’ve done all of these with EnerGyan. Its adaptable to your application.

Who’s the audience for this?

Anybody with a passion for energy and basic programming skills.

Is it just software-based education?

No! EnerGyan is software and HARDWARE customizable. Here are some things that you can do (limited list)

	You can change the type of source or load.

	You can change battery type or size.

	You can connect different type of sensors (moisture, temperature, light etc.)

	You can connect smart home devices with EnerGyan - Amazon Echo, Google Home, Wemo switches etc.

	You can change the configuration of your energy system. You can turn your EnerGyan smart home to EnerGyan Community Solar charging station by simple re-wiring.

	The list goes on …

 EnerGyan

EnerGyan

EnerGyan Features

	Electrical Hardware - contains a grid in a box. Comes with complete energy hardware - energy sources, loads, converters, batteries, energy management boards (called HEM).

	Computing - EnerGyan computing system can run your energy application.

	Communication - EnerGyan comes with a number of communication capabilities - WiFi, Ethernet, GSM/GPRS/3G and Bluetooth.

	Data storage - EnerGyan has on-board data storage which is continuously storing all electrical parameters. You can retrieve this data whenever you want.

	Software - EnerGyan’s software called HEMApp keeps the module up & running and does all the heavy lifting for you.

Nomenclature

	Loads - an entity which consumes energy is called a load. This can be a TV or your phone.

	Source - an entity which produces energy. This can be a solar panel, wind turbine etc.

	Storage - an entity which can store energy. Most common is a battery and they come in different varieties - lead acid, Li ion etc.

	Nodes - these are hardware ports that are used to physically connect a source or a load. It’s like an electric plug point you use to connect your phone charger. Every EnerGyan module has a fixed number of ports. EnerGyan DC has 8 and EnerGyan AC has 6 ports.

	HEM - Homegrid Energy Manager. This is the brain (energy management) of EnerGyan. It is custom built hardware and software which help manage EnerGyan.This keeps EnerGyan running and does all the heavy lifting. Every EnerGyan model has a HEM system.

What does EnerGyan DC contain?

It contains the following items

	Solar panel

	One 7Ah battery for energy system

	One 7Ah battery for management system

	One HEM system (management system)

	Battery charger port

	Two battery chargers for the batteries

	12V to 5V USB charger

	12V car charger

	Eight nodes (you can connect loads/sources)

What does EnerGyan AC contain?

It contains the following items

	Solar panel

	One 7Ah battery for energy system

	One 7Ah battery for management system

	One HEM system (management system)

	Battery charger port

	Two battery chargers for the batteries

	Inverter (120V AC output)

	6 nodes (only loads).

 Developing Apps with EnerGyan

Developing Apps with EnerGyan

This section deals with developing and deploying apps locally on EnerGyan.

What is an app?

When people hear the word ‘app’, most think of a sophisticated iOS/Android application for phones. We are here to change that mindset. For us, an app is a piece of software than can perform a task(s). It can be something as simple as a Python script with few lines of code which sends you an alert when your energy consumption crosses a threshold. While this might seem simple (and it is), its a valuable feature to have when you’re battery is running low or your solar panel is not producing enough energy.

Where should you run your app?

[image: _images/appDeploy.png]

	You can deploy your app on a computer (connected to the same network as EnerGyan)

	You can deploy your app on EnerGyan

When should you deploy your app on the computer?

	Your app does offline analysis

	It is computationally intensive

	Your app is UI (user interface) based and needs a large monitor, keyboard etc.

	Note: You can also run online apps if you have a dedicated computer

[image: _images/app_comp.png]
When should you run your app on EnerGyan?

	App has to run continuously (24*7)

	It it computationally less intensive

	App is latency sensitive

[image: _images/app_hem.png]

Before you start

Make sure you are authorized to access EnerGyan

You should get necessary permissions and training before you proceed.

Accessing EnerGyan

EnerGyan can be accessed through a web browser(wired or wireless),

They can also be accessed through SSH (wired or wireless). The boards are password protected.
Talk to the admin/manufacturer for these details.

Making sure EnerGyan is running

Make sure the EnerGyan platform is up and running. The easiest way is to check the touch-display and see if it displays the default screen as shown below.

[image: _images/touch-display.jpg]

Connect EnerGyan to your network

Connect EnerGyan hardware module to your network (wired or wireless)

	For wired connection, connect EnerGyan to your router through an Ethernet cable.

	For wireless connection, use the touch display (on EnerGyan) to connect it to your WiFi.

[image: _images/network.png]

Connecting to EnerGyan

To communicate with EnerGyan, make sure your computing device is on the same network as EnerGyan (or use VPN)

Communicating with EnerGyan

EnerGyan has an internal computer which runs a UDP [https://en.wikipedia.org/wiki/User_Datagram_Protocol] server. This means your app (deployed on EnerGyan or on your computer) which acts as a UDP client can request data from this server and also send requests to turn on/off nodes. Here [https://www.tutorialspoint.com/data_communication_computer_network/user_datagram_protocol.htm] is a quick tutorial on UDP.

Your app (which is the UDP client) can be written in any language.

EnerGyan tool kit abstracts communication between UDP server and client so that you don’t have to worry about UDP communication. However, at this point the toolkit only supports Python.

Note: You can use our API with any computer language

Python

If your app is Python based, we got you covered. See Downloading the EnerGyan ToolKit. This toolkit abstracts all the communication between your app and the EnerGyan server.

JavaScript

You can create a UDP client in JS using Node.js. See here [https://nodejs.org/api/dgram.html] for more details.

Java

Oracle has official Java documentation on UDP server and client. See this [https://nodejs.org/api/dgram.html]. You can also checkout this tutorial [https://docs.oracle.com/javase/tutorial/networking/datagrams/] .

Almost all popular computer languages have support for UDP.

Running the app on EnerGyan

Connect to EnerGyan

As long as you’re on the same network as EnerGyan, you can connect to it through a wired or a wireless connection. The IP of EnerGyan will be displayed on the touch screen.
Connect to it from browser. For example if EnerGyan’s IP is 192.168.1.159, enter the following in your browser

http://192.168.1.159:3000/ide.html

This opens up an online editor for developing and running your energy application.

Navigating to the EnerGyan toolkit

[image: _images/cloud9_edited.jpg]

Running the app (on EnerGyan)

EnerGyan comes preloaded with the EnerGyanToolKit.

On the online editor, select EnerGyanToolKit. It has two sub-directories - module and examples.

	module - contains modules necessary to create and run an app.

	examples - contains sample apps. examples/bare.py is a skeleton app that you can build on.

[image: _images/browser_lhs.png]

Let’s run a sample app

In the examples directory, select actuate.py. You should see the screen below.

[image: _images/sample.JPG]

Now, click on Run

[image: _images/run.png]
To stop your app, click on the Stop button located at the bottom of the editor. The picture below shows the output area of your app. The output of any print statements will be displayed here.

Now, click on Stop

[image: _images/stop.png]
You can create a new file/script/app by selecting File –> New File

Running your app continuously

If you want your app to run in the background, just close the browser after you click on Run

Running the app on your computer

To run the app on your computer, you need to download the EnerGyan Tool Kit.

Downloading the EnerGyan ToolKit

Go to https://gitlab.com/seup/EnerGyanToolKit

Fork the repository

Here is the guide from GitLab - https://docs.gitlab.com/ce/gitlab-basics/fork-project.html

Clone the fork you created

git clone PASTE_YOUR_SSH_OR_HTTPS_PROJECT_NAME_HERE

Navigate to the development tool kit directory

$ cd EnerGyanToolKit

Understanding development tool kit directory structure

In EnerGyanToolKit

	module - contains hem modules necessary to create an app. Copy this folder to your directory when creating your app.

	examples - contains sample apps

Creating your first app

You can use bare.py as a starting point. It has all the boiler plate code you need for an energy app.

Sample apps included

Here is a list

	pullData.py - Pull node(all) data from HEMApp Server through API

	pullData_single.py - Pull single node data from HEMApp Server through API

	actuate.py - Turn on/off nodes through API

	demandManage.py - Perform load management when power consumption crosses threshold

	email.py - Send an email from your app

	demandManage_email.py - Send an email from your app when you do load management

Running a sample app

Let’s run an app which turns on/off a particular node on HEM

Check server address

If you’re running this app on your computer or a different EnerGyan (which is different from where you’re pulling the data), change the SERVER_NAME to the local ip address.

If your app has to run in the background, use nohup

nohup python actuate.py &

Stopping your app

Get the process id (pid) of your app process

ps aux | grep actuate

The output of this looks something like this

user 70413 0.0 0.1 110404 9804 pts/8 Sl 13:33 0:00 python actuate.py

The pid in this case is 70413

pid is the number listed in the PID column for your app

Now kill that process

pkill -9 <pid>

In this case, it would be something like

pkill -9 70413

Creating a pull request

If you find any bugs, you can create pull requests.

Here are two tutorials

	https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html

	https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github - this is for GitHub but can be applied to GitLab

Skeleton app

Let’s look at a skeleton app that can be used as a starting point for app development

Open bare.py in examples to follow along with the rest of the section

#
bare.py
Skeleton app that can be used for app deployments

Author: Ashray Manur

import datetime
import threading
import time

sys.path.insert(1,'../')

import module.hemParsingData
from module.hemSuperClient import HemSuperClient

hemSuperClient = HemSuperClient("192.168.1.236", 9931)

def update(message, address):
 print 'Rec:', message, address
 #{'NODE': 'ALL', 'TYPE': 'DCPOWER', 'VALUE': [0.185, 5.9, 85.6, 10.4, 0, 0, 0, 12.5]} ('192.168.1.236', 9931)

hemSuperClient.subscribe(update)

def main():

 while(1):

 hemSuperClient.sendRequest("api/getdcpower/all")
 time.sleep(5)

if __name__ == "__main__":
 main()

The sections below are explaining the various components of the app framework using bare.py
as an example

Importing Modules

Import your standard python modules

import datetime
import threading
import time

Import hem modules

sys.path.insert(1,'../')

from module.hemSuperClient import HemSuperClient
import module.hemParsingData
import module.hemEmail

Note: there might be other standard or custom modules that you might
need to import based on what you’re doing

sys.path.insert(1,'../') is used to define the path to indicate the location of the modules. Change this depending on your directory structure.

Defining a trigger function

def update(message, address):
 print 'Rec:', message, address

This functions gets triggered every time your app gets a message from the EnerGyan server.
It takes two arguments message and address. When it is triggered, the actual data gets stored in message
and the address of the server responding to your request gets stored in response

Creating a new Client

This client is used to communicate with EnerGyan.
The EnerGyan runs a server(called HEMApp server) to which you can send requests and receive responses
This client abstracts the communication to make data communication between your app and the server easier.

#Creates a new HEM client to talk to the server
hemSuperClient = HemSuperClient("192.168.1.236", 9931)

If your app is running on EnerGyan computer, change the IP address to “localhost”

The port is fixed at 9931

Defining multiple Clients

Not included in bare.py

In case your app is communicating with many EnerGyans

hemSuperClient1 = HemSuperClient('localhost', 9931)
hemSuperClient2 = HemSuperClient('192.168.1.28', 9931)
hemSuperClient3 = HemSuperClient('192.168.1.29, 9931)

You can request data from all these servers as along as they are in the same network

Subscribing to updates

After you define your trigger function and the HEM client, you need to subscribe to updates.
This ensures that whenever you get a response from HEM. This can be done by

hemSuperClient.subscribe(update)

The argument to this function is the name of the trigger function.

Understanding response data from server

Whenever data is sent from the server, the trigger function gets called and it gives you two values
message and address.

message contains the response to the request you made
address contains the details of the server making that response

message is a dictionary (key:value) and address is a tuple

print 'Rec:', message, address

A sample message is as follows. This response if for a request of power data for all nodes in HEM

{'NODE': 'ALL', 'TYPE': 'DCPOWER', 'VALUE': [0.185, 5.9, 85.6, 10.4, 0, 0, 0, 12.5]}

To extract the value:

message['VALUE']

The output would be

[0.185, 5.9, 85.6, 10.4, 0, 0, 0, 12.5]

To extract the node corresponding to this value

message['NODE']

The output would be

ALL

There is usually one key:value per request

API

API general format

/api/<action>/<node-number>

Actions can be

	Turn on/off

	Get electrical data

	Send messages

Node numbers usually go from 0-7

How to use the API

hemSuperClient.sendRequest(apiRequest)

Sample request

hemSuperClient.sendRequest("api/getdcpower/0")

Sample response

#message
{'NODE': '1', 'TYPE': 'DCPOWER', 'VALUE': [45.7]}

EnerGyan DC Systems

This section is for EnerGyan DC.

Turn off nodes

Format

/api/turnoff/<node-number>

Sample

/api/turnoff/3

Sample response

#message
{'NODE': '3', 'TYPE': 'TURNON', 'VALUE': [0]}

For ‘VALUE’ 1 means ON and 0 means OFF

Turn on nodes

Format

/api/turnon/<node-number>

Sample

/api/turnon/1

Sample response

#message
{'NODE': '1', 'TYPE': 'TURNON', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

Status of single node

Format

/api/getnodestatus/<node-number>

Sample

/api/getnodestatus/1

Sample response

#message
{'NODE': '1', 'TYPE': 'STATUS', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

Status for all nodes

Format

/api/getnodestatus/all

Sample response

#responseData
{'NODE': 'ALL', 'TYPE': 'STATUS', 'VALUE': [0,0,0,1,1,1,0,1]}

0 is off and 1 is on

DC voltage for single node

Format

/api/getdcvoltage/<node-number>

Sample

/api/getdcvoltage/3

Sample response

#message
{'NODE': '3', 'TYPE': 'DCVOLT', 'VALUE': [14.2]}

The value is in Volts

DC voltage values for all nodes

Format

/api/getdcvoltage/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCVOLT', 'VALUE': [13.625, 13.6, 13.625, 13.4, 13.7, 13.8, 13.6, 13.6]}

The value is in Volts

DC current for single node

Format

/api/getdccurrent/<node-number>

Sample

/api/getdccurrent/4

Sample response

#message
{'NODE': '4', 'TYPE': 'DCCURRENT', 'VALUE': [1.88375]}

The value is in Amps

DC current values for all nodes

Format

/api/getdccurrent/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCCURRENT', 'VALUE': [1.6, 1.2, 0, 0.4, 3.7, 1.8, 1.3, 3.6]}

The value is in Amps

DC power for single node

Format

/api/getdcpower/<node-number>

Sample

/api/getdcpower/5

Sample response

#message
{'NODE': '5', 'TYPE': 'DCPOWER', 'VALUE': [26.74925]}

The value is in Watts

DC power values for all nodes

Format

/api/getdcpower/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCPOWER', 'VALUE': [0.185, 0.185, 5.3,0,0,0,0,0]}

The value is in Watts

DC energy for single node

Format

/api/getdcenergy/<node-number>

Sample

/api/getdcenergy/1

Sample response

#message
{'NODE': '1', 'TYPE': 'DCENERGY', 'VALUE': [2252428.391018]}

The value is in Joules. You can convert it to Wh

DC energy values for all nodes

Format

/api/getdcenergy/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'DCENERGY', 'VALUE': [29.21, 16.688, 13.5,3.52,0,0,0.3358,0]}

The value is in Joules. You can convert that to Wh

DC charge for single node

Format

/api/getdccharge/<node-number>

Sample

/api/getdccharge/0

Sample response

#message
{'NODE': '0', 'TYPE': 'DCCHARGE', 'VALUE': [170782.33881]}

The value is in Coulombs

DC charge values for all nodes

Format

/api/getdccharge/all

Sample response

#responseData
{'NODE': 'ALL', 'TYPE': 'DCCHARGE', 'VALUE': [8779.87, 5014.19, 4066.334, 1040.689,0.000328,0.000328,15.080517,0]}

The value is in Coulombs

EnerGyan AC Systems

This section is for EnerGyan AC.

Turn off nodes

Format

/api/turnoff/<node-number>

Sample

/api/turnoff/3

Sample response

#message
{'NODE': '3', 'TYPE': 'TURNON', 'VALUE': [0]}

For ‘VALUE’ 1 means ON and 0 means OFF

Turn on nodes

Format

/api/turnon/<node-number>

Sample

/api/turnon/1

Sample response

#message
{'NODE': '1', 'TYPE': 'TURNON', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

Status of single node

Format

/api/getnodestatus/<node-number>

Sample

/api/getnodestatus/1

Sample response

#message
{'NODE': '1', 'TYPE': 'STATUS', 'VALUE': [1]}

For ‘VALUE’ 1 means ON and 0 means OFF

Status for all nodes

Format

/api/getnodestatus/all

Sample response

#responseData
{'NODE': 'ALL', 'TYPE': 'STATUS', 'VALUE': [0,0,0,1,1,1,0,1]}

For ‘VALUE’ 1 means ON and 0 means OFF

AC voltage for single node

Format

api/getacvoltage/<node-number>

Sample

/api/getacvoltage/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACVOLT', 'VALUE': [115.717569]}

This is the RMS voltage and is in Volts

AC voltage for all nodes

Format

/api/getacvoltage/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACVOLT', 'VALUE': [115.82487, 115.82487, 115.82487, 115.82487, 115.82487, 115.82487]}

This is the RMS voltage and is in Volts

AC current for single node

Format

/api/getdcenergy/<node-number>

Sample

/api/getaccurrent/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACCURRENT', 'VALUE': [0.339167]}

This is the RMS current and is in Amps

AC current for all nodes

Format

/api/getaccurrent/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACCURRENT', 'VALUE': [0.339141, 0.304396, 0.009357, 0.005452, 0.003518, 0.003526]}

This is the RMS current and is in Amps

AC active power for single node

Format

api/getacpoweractive/<node-number>

Sample

api/getacpoweractive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACPOWERACTIVE', 'VALUE': [39.164083]}

AC active power for all nodes

Format

/api/getacpoweractive/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACPOWERACTIVE', 'VALUE': [39.127099, 34.572928, 0, 0, 0, 0]}

AC reactive power for single node

Format

/api/getacpowerreactive/<node-number>

Sample

api/getacpowerreactive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACPOWERREACTIVE', 'VALUE': [-0.74302]}

AC reactive power for all nodes

Format

/api/getacpowerreactive/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACPOWERREACTIVE', 'VALUE': [-0.744076, -5.766048, 0, 0, 0, 0]}}

AC active energy for single node

Format

/api/getacenergyactive/all

Sample

api/getacenergyactive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACENERGYACTIVE', 'VALUE': [0.034566]}

AC active energy for all nodes

Format

/api/getdcenergy/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACENERGYACTIVE', 'VALUE': [0.034648, 0.030616, 0, 0, 0, 0]}

AC reactive energy for single node

Format

api/getacenergyreactive/<node-number>

Sample

api/getacenergyreactive/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACENERGYREACTIVE', 'VALUE': [-0.000741]}

AC reactive energy for all nodes

Format

api/getacenergyreactive/all

Sample response

#message
{u'NODE': u'ALL', u'TYPE': u'ACENERGYREACTIVE', u'VALUE': [-0.000658, -0.005185, 0, 0, 0, 0]}

AC frequency for single node

Format

api/getacfrequency/<node-number>

Sample

api/getacfrequency/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACFREQUENCY', 'VALUE': [59.967205]}

AC frequency for all nodes

Format

api/getacfrequency/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACFREQUENCY', 'VALUE': [59.967205, 59.967205, 59.967205, 59.967205, 59.967205, 59.967205, 0, 0]}

AC angle for single node

Format

"api/getacangle/<node-number>"

Sample

api/getacangle/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACANGLE', 'VALUE': [-0.815625]}

AC angle for all nodes

Format

api/getacangle/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACANGLE', 'VALUE': [-0.73125, -9.50625, -21.65625, -27.5625, 68.428125, -11.025]}

AC power factor for single node

Format

/api/getacangle/<node-number>

Sample

api/getacangle/0

Sample response

#message
{'NODE': '0', 'TYPE': 'ACPF', 'VALUE': [0.999797]}

AC power factor for all nodes

Format

api/getacangle/all

Sample response

#message
{'NODE': 'ALL', 'TYPE': 'ACPF', 'VALUE': [0.999797, 0.985777, 0.924442, 0.27144, 0.364928, 0.012272]}

Modules

This section deals with the important modules that you can use to build your app.
These can be found in SeupAppKit/module

hemSuperClient.py

This module is used to communicate with the server

You can import it with

from module.hemSuperClient import HemSuperClient

Check out pullData.py to learn how to use it.

hemEmail.py

This module is used to send email with the server

You can import it with

import module.hemEmail

Check out email.py to learn how to use it

hemParsingData.py

This module parses data from HEM data dump to extract electrical and node data

You can import with

import module.hemParsingData

Check out parsing.py to learn how to use it

Tutorials

Understanding the HEM data dump

HEMApp (the core software which runs HEM) dumps all the electrical data (voltage, current, power etc.) on the microSD card on the processor. The file is data.csv and is located at /media/card

Here are few lines from data.csv

VOLT:13.65,NODE:0,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:1,DATE:12/8/17-2:28:40
VOLT:13.65,NODE:2,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:3,DATE:12/8/17-2:28:40
VOLT:13.65,NODE:4,DATE:12/8/17-2:28:40
VOLT:13.65,NODE:5,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:6,DATE:12/8/17-2:28:40
VOLT:13.62,NODE:7,DATE:12/8/17-2:28:40
AMP:0.00,NODE:0,DATE:12/8/17-2:28:40
AMP:0.00,NODE:1,DATE:12/8/17-2:28:40
AMP:0.00,NODE:2,DATE:12/8/17-2:28:40
AMP:0.00,NODE:3,DATE:12/8/17-2:28:40
AMP:0.00,NODE:4,DATE:12/8/17-2:28:40
AMP:0.00,NODE:5,DATE:12/8/17-2:28:40
AMP:0.00,NODE:6,DATE:12/8/17-2:28:40
AMP:0.00,NODE:7,DATE:12/8/17-2:28:40
POW:1.00,NODE:0,DATE:12/8/17-2:28:40
POW:2.00,NODE:1,DATE:12/8/17-2:28:40
POW:3.00,NODE:2,DATE:12/8/17-2:28:40
POW:4.00,NODE:3,DATE:12/8/17-2:28:40
POW:5.00,NODE:4,DATE:12/8/17-2:28:40
POW:6.00,NODE:5,DATE:12/8/17-2:28:40
POW:7.00,NODE:6,DATE:12/8/17-2:28:40
POW:8.00,NODE:7,DATE:12/8/17-2:28:40

Here the labels mean the following

	VOLT:13.65 - VOLT is dc voltage and the value followed by : is the voltage in volts. Similarly, AMP, POW, ENERGY, CHARGE are for dc current, power, energy and charge respectively.

	NODE:0 - indicates the node number. This can go from 0-7 for dc systems and 0-5 for ac systems.

	DATE:12/8/17-2:28:40 - indicates the date and time.

Extracting/copying data from HEM data dump

HEM Data Dump - HEM stores all the electrical data in a file data.csv in /media/card. This file is usually hundreds of megabytes. Copying the entire file for a small amount of specific data is unreasonable.

This tutorial shows how you can copy specific information from the data dump for your app. Three examples will be demonstrated.

	Only voltage data of all nodes for 2 days

	All electrical data of all nodes for a week

	Only power data of all nodes for 1 day

Open file.py to follow along

To copy one day’s worth of data from sample.csv (you can replace this with /media/card/data.csv) into a new file
oneDay.csv:

cmd = "grep -e '10/1/17' ../data/sample.csv > ../data/oneDay.csv"

	'10/1/17' - the date of interest

	/data/sample.csv - this is the source file (for this demo). If you want the actual data dump, replace this with /media/catd/data.csv

	/data/oneDay.csv - this is the destination file

Execute the command

result = subprocess.check_output(cmd, shell=True)

Check if your new file was created

fileExists = Path('../oneDay.csv')
if(fileExists.is_file()):
 print 'file exists'

Copy one day’s worth of voltage data

The command

cmd = "grep -e 'VOLT.*10/1/17' ../data/sample.csv > ../data/oneDayVolt.csv"

The search should satisfy both date and data type. Here the electrical data type is VOLT

Execute the command

result = subprocess.check_output(cmd, shell=True)

Check if the file exists

fileExists = Path('../data/oneDayVolt.csv')
 if(fileExists.is_file()):
 print 'file exists'

Copying one week worth of all data

The command

cmd = "grep -e '10/[1-8]/17' ../data/sample.csv > ../data/oneWeek.csv"

Execute the command

result = subprocess.check_output(cmd, shell=True)

Check if the file exists

#Check if the file exists. This is to make sure the file was created
fileExists = Path('../data/oneWeek.csv')
if(fileExists.is_file()):
 print 'file exists'

KnowledgeBase

Integrating other devices with EnerGyan

Connecting to a 3rd party device directly through wired or wireless channel

When you have other Internet devices that you’d like to connect to EnerGyan, you can use the following architecture. This can be useful for smart homes and sensor projects.

[image: _images/devices-1.png]
Connect your sensors or other peripherals to a WiFi micro-controller (or add a WiFi module to an Arduino) through serial communication. You can also use single board computers (SBC) like Raspberry Pis and Your app on EnerGyan has two components.

	The first component is the UDP client which talks to the EnerGyan server.

	The second component is the HTTP/UDP server which communicates with the micro-controllers.

	You can add other components such as processing, management and intelligence units.

When should I use this architecture?
This is can be used when the post processing sensor data is lightweight. EnerGyan on-board computer is not suitable for running high-end image processing or graphics related apps. It works well for low-end sensor data and communication.

What’s the role of EnerGyan in this architecture
EnerGyan serves as the energy system and a computation unit. For example in a smart home project, the input from the sensors (embedded system) is used to manage the energy system (EnerGyan). For example, you can turn off loads

Connecting to a 3rd party device through an intermediate device

When you have Internet devices that you would like to connect to EnerGyan through an intermediate device like your computer or powerful single board computers (SBCs). This configurations is when post processing of data from these Internet devices requires huge computing resources.

[image: _images/devices-2.png]
Connect your Internet device (like NEST camera) to your network. Other devices on this network are EnerGyan and your computer.

	Your app runs on your computer. It has three components - UDP client, HTTP/UDP client and the processing unit.

	The UDP client communicates with the EnerGyan platform to send and receive data/actuate nodes etc.

	The second component of your app is the HTTP/UDP client which is pulling data from the Internet Device.

	The third component (processing unit) can process the data from the Internet device (for example processing the images from NEST camera) and then based on that manage your energy system through the first component (UDP client)

When should I use this architecture?
This is can be used when the post processing sensor data is intensive. For example, image processing is one example.

What’s the role of EnerGyan in this architecture
EnerGyan serves as the energy system. For example in a smart home project, the input from your smart devices like Echo, NEST cameras can be processed on your computer and the result of that can be used to modify your energy system (EnerGyan)

 Troubleshooting

Troubleshooting

Coming Soon!

 EnerHack 2018

EnerHack 2018

EnerGyan team assignment

	Bears in Chairs —EnerGyan DC5

	E —————–EnerGyan AC2

	Solaris————EnerGyan DC2

	FPGA—————EnerGyan AC1

	becky Badgers——EnerGyan DC1

	Vidyut————-EnerGyan DC4

	energySaver——–EnerGyan DC3

This section has resources for participants with the EnerHack Energy Hackathon 2018.

EnerGyan Hardware

DC1

IP - 192.168.1.207

	Node 0: Solar

	Node 1: Battery Charger

	Node 2: All Fans

	Node 3: Mini fridge

	Node 4: N/A

	Node 5: N/A

	Node 6: LED Lights

	Node 7: Radio

[image: _images/dc1.jpg]

DC2

IP - 192.168.1.159

	Node 0: Solar

	Node 1: LED Light

	Node 2: Charger

	Node 3: LED Light Strip

	Node 4: N/A

	Node 5: N/A

	Node 6: DC/AC Converter (parallel with Node 7)

	Node 7: DC/AC Converter (parallel with Node 6)

[image: _images/dc2.png]

DC3

IP - 192.168.1.28

	Node 0: Battery charger

	Node 1: Right fan bolted next to DC 3 sign

	Node 2: Jhua fan second lowest platform

	Node 3: White light

[image: _images/dc3.png]

DC4

IP - 192.168.1.152

	Node 0: Battery charger

	Node 1: Left fan bolted next to the DC 4 sign

	Node 2: USB Led light string

	Node 3: Mitchell Fan

[image: _images/dc4.png]

DC5

IP - 192.168.1.177

	Node 0: (top light)

	Node 1: (middle light)

	Node 2: (bottom light)

	Node 3: (dual fan)

	Node 4: N/A

	Node 5: Nothing plugged in to USB port

	Node 6: Nothing plugged in to car charger

[image: _images/dc5.jpg]

DC6

IP - 192.168.1.217

	Node 0: Charger

	Node 1: Fan

	Node 2: Fan plugged in to car charger

	Node 3: LED light string

AC1

IP - 192.168.1.100

	Node 0: Fan

	Node 1: Desk Lamp

	Node 2: NA

	Node 3: NA

[image: _images/ac1.png]

AC2

IP - 192.168.1.236

	Node 0: Fan

	Node 1: Desk Lamp

	Node 2: NA

	Node 3: NA

Other hardware

Misc

 Index

Index

_static/comment-close.png

_static/comment.png

_images/browser_lhs.png
Cloud9 File Edit Find View Goto Run Tools Window Preview @) Run

v B doudd E Welcome . +
= autorun
v i EnerGyanToolKit

= . Welcome

B ucense
B READMEmd

s
8
8
b4
g

£
5

=

Welcome to Cloud9. Use this welcome screen to tweak the look & feel of the Cloud9 user interface.

Choose a Preset

v FullIDE Minimal Editor Sublime Mode

_images/cloud9_edited.jpg
Cloud9 Fle Edt Find View Goto Run Tools Window Preview @ Run

i s> B Welcome X+
= autorun
> 8 EnerGyanToolkit

= ‘ Welcome

Welcome to Cloud9. Use this welcome screen to tweak the 100k & feel of the Cloud9 user interface.

Workspace

Ni

Commands

Choose a Preset

Changes.

v FuliDE Minimal Editor Subime Mode

Configure Cioud9
Main Theme: Cloud9 Classic Dark Theme =
Splt Layout: No Spit 3
Editor (Ace) Theme: Cloud9 Night Low-Color =
Keyboard Mode: Default :
@ ot Tabs:
‘more settings.
Next Steps

« OpenaTerminal
= Open the Console
« Createanew file

bash - "beaglebone” x +

_static/file.png

_images/app_comp.png
Your computer

Your
app
Client

EnerGyan

API

HEMApp
Server

_static/down-pressed.png

_images/app_hem.png
EnerGyan

HEMApp

—>

Server

Client API

_static/down.png

_images/dc3.png

_images/dc4.png
SR T T S T I] sl UV e

_static/up-pressed.png

_images/dc1.jpg
G "eeSonic

A_mwnuwmna.u:um.p
5

,:;_._._1

_static/minus.png

_images/dc2.png

_static/plus.png

_images/dc5.jpg
° 3

& - . o

3 ~ - L e L 3 B O i &
R B > 3 (ST, X
SA L e

- i
PR
o

$L0AD 4

e ———

e —

—_— ? B S 4 e B/ T At S i S Lo -
. 2 o, - r ~ “- o e A NS5 e e e,

o i i,
S e e ————_
> -

_images/devices-1.png
EnerGyan UDP Server

UDP HTTP/UDP
Client Server

Processing/Management

Your app

reless/W

/ Sensors

Serial comm. —
12C, UART, SPI
etc.

WiFi

microcontroller

red

HTTP/UDP

EnerGyan

Client

Firmware on
k microcontroller

Embedded System

/

_images/ac1.png

_images/appDeploy.png
You have two choices

_images/devices-2.png
EnerGyan Computer, SBCs Internet Devices
)

EnerGyan Wired/Wireless DP P/UDP [— (“ ’
UDP Server e e Wireless —

Your app

NS 2N o]

nav.xhtml

 Table of Contents

 		
 EnerGyan

 		
 Contact

 		
 Frequently Asked Questions

 		
 Where can EnerGyan be used?

 		
 What can you learn/teach with EnerGyan?

 		
 How do students program EnerGyan?

 		
 What can EnerGyan do?

 		
 How can you teach with EnerGyan?

 		
 Who’s the audience for this?

 		
 Is it just software-based education?

 		
 EnerGyan

 		
 EnerGyan Features

 		
 Nomenclature

 		
 What does EnerGyan DC contain?

 		
 What does EnerGyan AC contain?

 		
 Developing Apps with EnerGyan

 		
 What is an app?

 		
 Where should you run your app?

 		
 Before you start

 		
 Make sure you are authorized to access EnerGyan

 		
 Accessing EnerGyan

 		
 Making sure EnerGyan is running

 		
 Connect EnerGyan to your network

 		
 Connecting to EnerGyan

 		
 Communicating with EnerGyan

 		
 Python

 		
 JavaScript

 		
 Java

 		
 Running the app on EnerGyan

 		
 Connect to EnerGyan

 		
 Navigating to the EnerGyan toolkit

 		
 Running the app (on EnerGyan)

 		
 Running the app on your computer

 		
 Downloading the EnerGyan ToolKit

 		
 Fork the repository

 		
 Clone the fork you created

 		
 Navigate to the development tool kit directory

 		
 Understanding development tool kit directory structure

 		
 Creating your first app

 		
 Sample apps included

 		
 Running a sample app

 		
 Stopping your app

 		
 Creating a pull request

 		
 Skeleton app

 		
 Importing Modules

 		
 Defining a trigger function

 		
 Creating a new Client

 		
 Defining multiple Clients

 		
 Subscribing to updates

 		
 Understanding response data from server

 		
 API

 		
 API general format

 		
 How to use the API

 		
 Sample request

 		
 Sample response

 		
 EnerGyan DC Systems

 		
 EnerGyan AC Systems

 		
 Modules

 		
 hemSuperClient.py

 		
 hemEmail.py

 		
 hemParsingData.py

 		
 Tutorials

 		
 Understanding the HEM data dump

 		
 Extracting/copying data from HEM data dump

 		
 KnowledgeBase

 		
 Integrating other devices with EnerGyan

 		
 Troubleshooting

 		
 EnerHack 2018

 		
 EnerGyan team assignment

 		
 EnerGyan Hardware

 		
 DC1

 		
 DC2

 		
 DC3

 		
 DC4

 		
 DC5

 		
 DC6

 		
 AC1

 		
 AC2

 		
 Other hardware

 		
 Misc

_static/up.png

_images/program.png
Connect to EnerGyan hardware
wired/wireless

k'?l_r_‘!

Use intuitive code templates and APIs to
write a simple application
o

R'?Ig

Deploy your app on EnerGyan

s:,:Ig

_images/run.png
Cloud9 File Edit Find View Goto Run Tools

Preview

v i doud9
> B autorun
v i EnerGyanToolKit
v m examples

A actuate.py
A andllaryService.py
4 bare.py
4 demandManage.py
A email.py
4 onlineManagement.py
4 parsing.py

TR T

il
%g
g

#
>

sample HEM App to turn on and

Workspace

Author: Ashray Manur

import datetime
import threading
import time
import sys

Navigate

VRNOU A WN R

e
(=)

sys.path.insert(1,'../")
from module.hemSuperClient import HemSuperClient

(o
wN

Commands

[y
kY

SERVER_PORT = 9931
SFRVER NAME "localhost*

"
N

_images/energyan.png
PV panel
(energy source)

Batteries
(energy storage)

Management
Boards
(management)

Electrical outlets
(for appliances
Power electronics and phones)
(energy conversion)

_images/network.png
Wired

_static/ajax-loader.gif

_images/stop.png
